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Abstract 

■ How does the human brain support real-world learning?  
We used wireless electroencephalography to collect neuro- 
physiological data from a group of 12 senior high school stu- 
dents and their teacher during regular biology lessons. Six 
scheduled classes over the course of the semester were orga- 
nized such that class materials were presented using different 
teaching styles (videos and lectures), and students completed   
a multiple-choice quiz after each class to measure their reten- 
tion of that lesson’s content. Both students’ brain-to-brain syn- 
chrony and  their  content  retention were  higher  for videos 
than lectures across the six classes. Brain-to-brain synchrony 
between the teacher and students varied as a function of stu- 

 
 

dent engagement as well as teacher likeability: Students who 
reported greater social closeness to the teacher showed 
higher brain-to-brain synchrony with the teacher, but this 
was only the case for lectures—that is, when the teacher is   an 
integral part of the content presentation. Furthermore, stu- 
dents’ retention of the class content correlated with student– 
teacher closeness, but not with brain-to-brain synchrony. These 
findings expand on existing social neuroscience research by 
showing that social factors such as perceived closeness are re- 
flected in brain-to-brain synchrony in real-world group settings 
and can predict cognitive outcomes such as students ’ academic 
performance. ■ 

 
 
 

INTRODUCTION 
Methodological advances in neuroscience research have 
enabled novel approaches to investigating how the brain 
supports dynamic real-world social interactions. For ex- 
ample, researchers have begun to study the neural basis 
of social interactions by comparing the brain responses of 
multiple individuals during a variety of seminaturalistic tasks 
(for a review, see Hasson & Frith, 2016; Babiloni & Astolfi, 
2014; Scholkmann, Holper, Wolf, & Wolf, 2013; Hasson, 
Ghazanfar, Galantucci, Garrod, & Keysers, 2012). Research 
involving turn-taking in gestural (Schippers, Roebroeck, 
Renken, Nanetti, & Keysers, 2010) as well as verbal 
(Dikker, Silbert, Hasson, & Zevin, 2014; Stephens, Silbert, 
& Hasson, 2010) communication have demonstrated a re- 
lationship between brain synchrony and comprehension 
as well as the predictability of another person ’s commu- 
nicative act. Further work has shown that complex audio- 
visual stimuli (e.g., natural movies) elicit similar brain 
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activity among viewers and emotional responses and, 
crucially, vary as a function of participants’ attentional 
engagement (Ki, Kelly, & Parra, 2016; Chang et al., 2015; 
Nummenmaa et al., 2012; Jääskeläinen et al., 2008; 
Hasson, Nir, Levy, Fuhrmann, & Malach, 2004). 

Although these experiments explore the similarities 
and differences in neural activity across participants as 
they engage in similar or pseudointeractive tasks, they 
do not capture the dynamic nature of real-world settings. 
Methodological constraints limit the ways in which 
researchers have been able to explore the brain basis of 
social interactions as they occur in real world. Although 
providing promising results, these studies are still largely 
confined to the laboratory, mostly limited to dyads, and 
typically use neuroimaging technology with low temporal 
resolution (e.g., functional near-infrared spectroscopy). 
We know that the direct study of face-to-face exchanges 
is critical to fully understand social interactions, yet there 
is a gap in the research exploring the underlying neural 
mechanisms of joint behavior as it naturally unfolds 
(Dumas, 2011). To be able to investigate how the brain 
supports interactions that resemble the complexity of the 
interactions we encounter in everyday life, hyperscanning 
research will have to accommodate more ecologically 
valid situations (Babiloni & Astolfi, 2014; Schilbach 
et al., 2013; Dumas, 2011). In the current study, we 
investigated the neuroscience of real-world classroom 
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learning using mobile electroencephalography (EEG) 
headsets to simultaneously record participants in support 
of previous experimentation by Dikker et al. (2017). 

Increasingly, research shows that, during joint actions, 
people become “coupled” at motor, perceptual, and cog- 
nitive levels in both planned and improvised  coordina-  
tion (Knoblich, Butterfill, & Sebanz, 2011). Participants 
during synchronized motor activity modify their own 
actions in response to their partners (Dumas, Nadel, 
Soussignan, Martinerie, & Garnero, 2010).  Hyperscan- 
ning neuroscience research has shown not only a rela- 
tionship between synchrony at the motoric and neural  
levels (Dumas et al., 2010) but also that face-to-face inter- 
actions moderate the relationship between social factors 
and brain-to-brain synchrony (Dikker et  al.,  2017;  Jiang 
et al., 2015; Hari, Himberg, Nummenmaa, Hämäläinen, & 
Parkkonen, 2013; Scholkmann et al., 2013; Jiang, Dai, Peng, 
Liu, & Lu, 2012; Dumas et al., 2010). Specifically, joint action 
tasks demonstrate that synchronous motor activity within 
interactive partners leads to increased feelings of affil- 
iation and social cohesion (Valdesolo, Ouyang, & DeSteno, 
2010; Hove & Risen, 2009; Bernieri, 1988), particularly in 
cooperative versus competitive contexts, and that this is 
reflected at the neural level (Cheng, Li, & Hu, 2015; Cui, 
Bryant, & Reiss, 2012; Yun, Watanabe, & Shimojo, 2012). 

The classroom setting is an exemplary environment to 
systematically investigate group interactions—between 
students and students with their teacher—under semi- 
controlled conditions, while measuring behavioral and 
cognitive outcomes (e.g., academic performance and stu- 
dent engagement; Scholkmann et al., 2013; Watanabe, 
2013). The dynamic interaction between a teacher and    
a group of students is fundamental to classroom learning 
and has been shown to affect both student engagement 
and academic achievement ( Watanabe, 2013; Hughes, 
Wu, Kwok, Villarreal, & Johnson, 2012; Walton & Cohen, 
2011; Hamre & Pianta, 2001; Bernieri, 1988). Teaching 
and learning can be viewed as a joint action between 
the teacher and the students such that features of the 
interactive partner and the event are treated as stimuli   
in a reciprocal exchange (Sensevy, Gruson, & Forest, 
2015). Research into student–teacher relationship ex- 
changes in the classroom suggests that exploring under- 
lying neural activity may support understanding and 
predicting educational outcomes from  the  perspective 
of the teacher and the student (Holper et al., 2013). Re- 
cently, researchers have used portable EEG equipment  
in the classroom to record nine students simultaneously 
during natural movie viewing and reproduced findings 
from similar, laboratory-based, experimental designs 
with commercial-grade equipment, demonstrating the 
potential for real-world measurement of students’ atten- 
tional engagement (Poulsen, Kamronn, Dmochowski, 
Parra, & Hansen, 2017). 

In further recent classroom-based experimentation, 
which forms the foundation for the current work, authors 
report that brain-to-brain synchrony (quantified as total 

interdependence [TI] or interbrain coherence; Wen, 
Mo, & Ding, 2012) between students during class activi- 
ties was correlated with student engagement and class- 
room social dynamics (Dikker et al., 2017). Students’ 
synchrony to the group was higher in their preferred 
teaching style (e.g., video over lecture) and related to 
greater student focus, group affinity, and empathy 
(Dikker et al., 2017). In addition, findings in group social 
dynamics speak directly to the presence of others as a 
moderator of student synchrony during class. For exam- 
ple, higher student ratings of their teacher correlated 
with a smaller difference between video (where the 
teacher played no role) and lecture conditions (where 
the teacher was central), and students who engaged in 
prelesson face-to-face baseline recordings showed the 
highest pairwise synchrony during class with their mutual 
gaze partner compared with other random students in 
the group (Dikker et al., 2017). Together, their results 
suggest that brain-to-brain synchrony is driven by a com- 
bination of (i) stimulus properties, (ii) individual differ- 
ences, and (iii) social dynamics. 

 
 

The Current Study 

In the context of classroom learning, attention is known to 
play a critical role in learning and maintaining information 
(Reyes, Brackett, Rivers, White, & Salovey, 2012), and 
student attention is a challenge even for the most experi- 
enced teachers (Evertson & Weinstein, 2013). If brain-to- 
brain synchrony indeed increases as a function of shared 
attention (to the teacher, the lesson content, peers), as 
suggested by the research  summarized  above  (Dikker 
et al., 2017; Ki et al., 2016), and attention increases reten- 
tion (Cohen & Parra, 2016), we can then ask whether a 
student’s neural synchrony to the rest of the group or with 
the teacher predict their retention of the content. 

To capture the unique underlying neural activity of the 
social and behavioral factors in the class, we simulta- 
neously recorded students and their teacher during their 
usual high school biology lessons, which included both 
video and lecture components, and tested students’ re- 
tention postlesson. These teaching styles generated data 
that were relatively free of motion artifacts, a consider- 
able concern in real-world EEG research (see Dikker et 
al., 2017, supplementary materials for an extensive dis- 
cussion and evidence showing that motion artifacts do 
not explain brain-to-brain synchrony). We aimed to 
address two research questions, pertaining to the rela- 
tionship between brain-to-brain synchrony (TI; Wen et 
al., 2012) on the one hand and classroom learning and 
student–teacher relationships on the other. 

1. Does brain-to-brain synchrony between a student and 
their peers predict their retention of the class content? 

2. Is there a relationship between student–teacher 
brain-to-brain synchrony, classroom learning, and 
student–teacher relationships, respectively? 
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In Dikker et al. (2017), both student ratings (e.g., en- 
gagement) and brain-to-brain synchrony between stu- 
dents were higher when students viewed lesson-related 
videos compared with lectures, which allows us to ask   
if such a parametric difference also exists for content 
retention (Research Question 1). In addition, as the 
teacher plays a pivotal role during lectures but not during 
videos, we ask whether the student–teacher relationship 
matters more when the teacher is present (Research 
Question 2). To address these questions, we employed   
a similar setup as the classroom EEG findings from 
Dikker et al. but included two metrics in addition to 
student-to-group synchrony: (1) student performance 
and (2) student–teacher brain-to-brain synchrony. 

 
 

METHODS 
Overall Procedure 
This experiment took place between February 2016 and 
May 2016. We collaborated with a New York City high 
school biology class composed of juniors and seniors. 
Students received an introduction to neuroscience and 
the experimental background in the fall semester preced- 
ing the experiment and then a refresher in the spring 
semester right before the classroom EEG sessions 
(Figure 1A). Students were also introduced and trained 
to use the wireless EEG equipment to assist in presession 
setup and postsession breakdown procedures (see 
vimeo.com/212150060 for an impression of the class- 
room EEG setup in a different school). Pre-experimental 
questionnaires were electronically mailed to students and 
the teacher for completion before recording sessions. 
After all recording sessions, we returned for a nonrecord- 
ing session to administer the same preexperiment elec- 
tronic questionnaires. 

During six classroom sessions, 80 min each, we visited 
the class to record neurophysiological activity as the 
students and their teacher engaged in semiregular class- 
room activities (Figure 1B and C). Class content followed 
the teacher’s preplanned biology curriculum. For every 
session, to preserve time, participants and experimenters 
worked together to set up the mobile EEG headsets and 
test connectivity across all channels. Students also filled 
out presession questionnaires during this time (see 
below). EEG was recorded from students and their 
teacher simultaneously for all conditions. 

For each session, students and their teacher’s EEG ac- 
tivity was recorded during a preexperimental baseline in 
three conditions (e.g., facing the wall, facing a partner, 
and facing the group; 2 min each). Afterward, all partici- 
pants were simultaneously EEG-recorded during the 
lesson, which was composed of two lecture blocks and 
two video blocks (interleaved) of approximately 5 min 
each, with 20 min per lesson. The final EEG recording 
was a repeated baseline condition also for 2 min each 
through altering the sequence of conditions. After 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Experimental setup, procedure, and synchrony. (A) 
Experimentation was preceded by a neuroscience crash course to 
introduce students to the foundations for the current study. EEG 
recordings occurred over six sessions. (B) Each session was 80 min 
and composed of setup, pretesting and posttesting baseline EEG 
recordings, and four blocks of experimental conditions (two lectures 
interleaved with two videos). After EEG recordings, students were 
tested for lesson content retention with quizzes (five questions 
per lesson block) and finished with a postsession self-report 
questionnaire. (C) Illustration reproduced from Dikker et al. (2017)    
of the general classroom recording setup for each session. Synchrony 
between student-to-teacher (D) and student-to-group (E) can be 
explored using TI in relation to performance and social factors. 

 
removing EEG equipment, students completed a post- 
lesson multiple-choice quiz as a measure of students’ 
lesson content retention and a self-report questionnaire 
for students’ engagement, focus, and likability of the 
teaching style (e.g., lecture vs. video; see details below). 

 

Participants 

Participants of this study were 12 healthy high school 
students (seven girls and five boys, aged 16–18 years), 
randomly chosen from the entire class of 19 (one student 
of 19 declined participation altogether and was assigned 
the role of experimental assistant). Consent forms were 
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distributed to all students and the teacher (including 
parental consent for students under the age of 18 years) 
before the beginning of data collection. The institutional 
review board of New York University approved all exper- 
imental procedures for this study. One student (a girl) 
was not included in the statistical analysis reported below 
because of limited TI values (e.g., only student-to-group 
TI for three lecture blocks in total for all EEG recording 
sessions, and no student-to-teacher TI, was available for 
computation). 

 
Teaching Styles 

Classroom activities included two “teaching styles”—the 
teacher’s lectures and lesson-related educational videos. 
Before each recording session, we designed lesson con- 
tent with the teacher based on her normal curriculum for 
the class and semester so as to maintain continuity and 
normalcy in relation to the overall class structure. Be- 
fore each session, the researcher collaborated with the 
teacher to design lectures and choose relevant educa- 
tional videos suited to the level of the class, structuring 
content to fit the session time constraints (∼5 min per 
condition). In each session, the teacher lectured for 
approximately 5 min and then presented the students 
with a 5-min instructional video, and after a short break, 
this sequence was repeated in the same order. Data anal- 
yses were performed for each student on each day for 
each teaching style. Thus, there was one TI (see below) 
value per student per day per teaching style (Lectures 1 
and 2 were averaged together and compared with the 
average of Videos 1 and 2). 

 
Student Retention 

Students completed a 20-question multiple-choice 
knowledge quiz immediately after each recording session 
(six in total) to test retention of core concepts from the 
day’s lesson. The knowledge quiz included five questions 
for each lecture or video unit (thus 20 questions in total). 
The teacher and the researchers codesigned quizzes be- 
fore recording sessions to ensure that quiz content was 
adequately paired to the students ’ general comprehen- 
sion level. Scores were computed as an average per 
teaching style per session to assess information reten- 
tion for lectures compared with videos. Outlier (<0.2) 
and at-ceiling performance (1) was removed in the 
statistical analyses reported below. 

 
Questionnaires 

Two types of questionnaires were administered to stu- 
dents: (i) before and after all recording sessions and (ii) 
before and after each recording session. The prestudy 
and poststudy questionnaires included demographic 
information (gender and age), class and content likability, 
and closeness ratings toward the teacher and each stu- 

dent in the class. Before and after the recording session, 
students filled out brief self-report items including their 
engagement and general likability of the day’s lesson and 
experimental experience. Students were asked directly 
how much they enjoyed and felt engaged in both teach- 
ing styles separately for comparison. All self-report ques- 
tionnaires were on a scale of 1–7 and were max–min 
normalized in all figures for presentation purposes. 

 

Data Collection, Preprocessing, and Analysis 
EEG Data Collection 
Recordings were collected over six class sessions 
throughout the spring semester (February 2016 through 
May 2016). Students were briefed on basic EEG technol- 
ogy and uses and were aware of movement, speech, and 
eye blink artifacts. Further instructions to minimize 
movement and speech during recording segments were 
given before each lesson, and students were instructed to 
reserve questions and discussion for after the recording 
session was over. Thus, minimal to no conversational ex- 
change occurred between students and their teacher dur- 
ing the EEG recordings. EEG activity was recorded 
simultaneously from 12 students and their teacher using 
Emotiv wireless EMOTIV EPOC EEG headsets (14 chan- 
nels; sampling rate = 128 Hz, online notch filter; mastoid 
reference locations; Debener, Minow, Emkes, Gandras, & 
de Vos, 2012). Custom software built using the Open- 
Frameworks software package (www.openframeworks. 
com) was used to record EEG data from all 13 partici- 
pants simultaneously onto a single computer (MacBook 
Pro). Individual laptops (a combination of students’ per- 
sonal computers and those provided by the school) were 
set up at the beginning of each session to test each par- 
ticipant’s headset connectivity and electrode impedance 
before data collection. For a detailed discussion of the 
software and experimental setup and evaluation of the 
EEG data quality, see Dikker et al. (2017; supplemental 
materials). 

 
 

Analysis: Quantifying Brain-to-Brain Synchrony 
EEG Preprocessing 
The raw EEG data for students and the teacher for each 
class and each teaching style (videos and lectures) were 
filtered and preprocessed using EEGLAB (Delorme & 
Makeig, 2004). The signals were band-pass filtered be- 
tween 0.5 and 35 Hz and divided into 1-sec epochs for 
artifact rejection and EEG analysis. Artifacts in the data 
were both automatically and manually excluded. We first 
set a rejection threshold in EEGLAB of ±100 μV for all 
channels and then visually inspected each 1-sec epoch  
to further exclude eye, muscle, and speech-related arti- 
facts. This resulted in an average rejection rate (across 
students and days) of 59% of EEG-recorded epochs dur- 
ing lecture lessons and 54% of EEG-recorded epochs 
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TIx;y¼ − 2π − 2π ln 
−π 

ln   1 − CxyðλÞ  1 − CxyðλÞ 

during video lessons. Subsequently, channels with aver- 
age amplitude diverging from the mean channel ampli- 
tude by 4 SDs were excluded from analysis. 

 
 

Computing Brain-to-Brain Synchrony: TI 

Brain-to-brain synchrony was computed using the method 
of TI (Dikker et al., 2017; Wen et al., 2012). Spectral coher- 
ence was computed based on the Welch method to limit 
bias in coherence estimation (Dikker et al., 2017; Burgess, 
2013). For every student–student  and  student–teacher  
pair during each 1-sec epoch recorded  per  teaching style, 
TI was computed for a pair of simultaneously  acquired 
time series (e.g., (x1,y1), (x2,y2),… (x3,y3)) as: 

resolution. A minimum of 30 artifact-free mutual epochs 
for pairs was required to be included in the analysis for 
the corresponding teaching style per day. For each pair 
of participants, TI values across all paired electrodes were 
averaged. Then, student-to-group TI was calculated by 
averaging all possible pairwise combinations between 
one participant and the rest of the group. Student-to- 
teacher TI was a pairwise value between the student 
and their teacher. Student-to-group TI and student-to- 
teacher TI were then entered in the multilevel models  
for statistical analysis (Figure 1D and E) to evaluate 
students’ synchrony with the group and their teacher in 
relation to the performance and social factors. 

 1 1 
Z π Z π ( 

 

 
2 

( 
2 

Analysis Strategy 
  

 

where Cxy(λ) is the coherence between the two signals, 
x and y, at frequency f = λ/2π. 

In this study, six preselected channels, which were 
most often free of noise across students in Dikker et al. 
(2017), were used for computing TI. These included two 
occipital channels (O1, O2), two frontal channels (F3, 
F4), and two parietal channels (P7, P8)—unless elec- 
trodes have been rejected based on artifacts. TI was 
assessed according to the methodology of Dikker et al. 
First, we computed the magnitude-squared coherence 
using the Welch method for the six preselected one-on- 
one paired combinations of electrodes from two partici- 
pants. This coherence was calculated for the frequency 
range between 1 and 20 Hz by tapering nonoverlapping 
1-sec epochs with a Hanning window (zero-padded to    
4 sec; Mäki & Ilmoniemi, 2010; Lalor et al., 2005) and per- 
forming the Fourier transform with a 0.25-Hz frequency 

group TI, student-to-teacher TI, quiz scores, and ques- 
tionnaire metrics across days, we created multilevel 
models (Goldstein, 1995), with days nested within stu- 
dents. Multilevel models were implemented in the SAS 
PROC MIXED procedure (random effects were modeled 
wherever possible; Singer, 1998). Table 1 summarizes the 
repeated-measures analyses that were conducted and 
their corresponding research questions. 

 

RESULTS 
Student-to-Group Synchrony and 
Memory Retention 
We first tested whether brain-to-brain synchrony be- 
tween a student and their peers predicted content reten- 
tion. Overall, students retained content presented in 
videos better than content from the lectures (video:  

 
Table 1. Repeated-Measures Multilevel Models and Corresponding Research Question (Related to Figures 2 and 3)  

Analysis Research Question 

(1) Repeated-measures multilevel regression analysis assessing 
effects of Teaching Style × Quiz Scores on student-to-group TI 

(2) Repeated-measures multilevel regression analysis assessing 
effects of Teaching Style × Engagement on student-to-teacher TI 

(3) Repeated-measures multilevel regression analysis assessing 
effects of teacher-modulated student-to-group TI on student- 
to-teacher TI and any possible interaction by teaching style 

(4) Repeated-measures multilevel regression analysis assessing 
effects of student-to-teacher closeness on student-to-teacher 
TI and any possible interaction by teaching style 

(5) Repeated-measures multilevel regression analysis assessing 
effects of student-to-teacher closeness on quiz scores and any 
possible interaction by teaching style 

(6) Repeated-measures multilevel regression analysis assessing 
effects of student-to-teacher TI on quiz scores and any 
possible interaction by teaching style 

Do quiz scores vary by teaching style and as a function of 
student-to-group TI? 

Does student-to-teacher TI vary by teaching style and as a 
function of engagement? 

Does any effect of the teacher in student-to-group TI covary 
with student-to-teacher TI? Is this the case only for the 
(teacher-relevant) lecture teaching style? 

Does student-to-teacher closeness predict student-to-teacher TI? 
Is this the case only for the (teacher-relevant) lecture teaching 
style? 

Does student-to-teacher closeness predict quiz scores? Is 
this the case only for the (teacher-relevant) lecture 
teaching style? 

Does student-to-teacher TI predict quiz scores? Is this 
the case only for the (teacher-relevant) lecture teaching 
style? 

 
 

To investigate the relationship between student-to- 
To investigate the relationship between student-to- dλ 

−π 
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0.78 ± 0.02; lecture: 0.70 ± 0.03; Teaching Style × Quiz 
Scores: F(1, 10) = 6.40, p = .029; Figure 2A, right). How- 
ever, contrary to our prediction based on previous find- 
ings (Cohen & Parra, 2016), there was no significant 
relationship between student-to-group brain synchrony 
and lesson content retention (Student-to-Group TI × 
Quiz Scores: F(1, 70) = 1.16, p = .2847; Figure 2B; 
Table 1, Cell 1). 

 
Brain-to-Brain Synchrony, Student–Teacher 
Dynamics, and Learning 

Similar to our previous findings (Dikker et al., 2017), stu- 
dents reported higher daily engagement for videos com- 
pared with lectures (video: 5.05 ± 0.21; lecture: 3.63 ± 
0.18; Daily Engagement × Teaching Style: F(1, 9) = 
14.67, p = .004). In addition, student-to-teacher TI sug- 
gests variations according to teaching style where brain 
synchrony with the teacher was significantly higher for 
videos compared with lectures (video: 0.65 ± 0.02; lec- 
ture: 0.39 ± 0.03; Student-to-Teacher TI × Teaching 
Style: F(1, 10) = 35.33, p = .0001; Figure 2C, left), and 
there was a strong interaction between the two variables 
(Student-to-Teacher TI × Daily Engagement: F(1, 43) = 
10.33, p =.003; Figure 2D; Table 1, Cell 2). Interestingly, 

daily student engagement was not correlated with 
student-to-group brain synchrony (not shown), replicat- 
ing similar findings from Dikker et al. (2017), who found 
that postsemester engagement ratings, but not daily 
engagement ratings, correlated with student-to-group 
TI. This suggests that students’ relationship to their 
teacher may be a stronger predictor of class engagement 
than a student’s peer. 

We next explored whether “teacher-relevant” factors 
varied as a function of teaching style. As pointed out 
above, a major distinction between video and lecture 
teaching styles is that the teacher plays a pivotal role dur- 
ing lectures, whereas this is not the case for videos. 
Dikker et al. (2017) found that a student’s teacher like- 
ability rating was significantly correlated with the differ- 
ence between a student’s student-to-group TI during 
video as opposed to lecture content (i.e., student-to-group 
TI during videos was used as a “baseline” condition): The 
greater the teacher likeability, the smaller the difference 
between conditions (recall that video sessions overall 
show larger TI values, because of a combination of stimu- 
lus properties and engagement factors; see Dikker et al., 
2017). Here, we extend this finding to student-to-teacher 
TI: As shown in Figure 3A and B, the correlation between 
student-to-teacher TI during lectures, on the one hand, 

 
 
 

 
Figure 2. Brain-to-brain synchrony, student retention, and individual differences. (A) Average student-to-group TI (left) and average quiz scores 
(right) for two teaching styles (videos vs. lectures). Students’ brain synchrony with the group did not correlate with performance on a knowledge 
quiz (B). (C) Student-to-teacher TI (left) and students’ day-to-day self-reported engagement (right). Students’ daily engagement predicted student-to- 
teacher TI (D). 
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Figure 3. Social dynamics predict student–teacher synchrony and retention. (A) The difference in student-to-group TI (video TI minus lecture TI) 
predicted greater synchrony with the teacher during lectures, but not during videos (B). (C)  Student–teacher closeness predicted student-to-  
teacher synchrony during lectures, but not during videos (D). Student–teacher closeness predicted better quiz scores (E), but student-to-teacher      
TI did not (F). 

 

and the video–lecture difference between student-to- 
group TI, on the other, suggests significant variations 
by teaching style (Student-to-Teacher TI × Student-to- 
Group TIvideo−lecture: F(1, 28) = 6.48, p = .0167; Table 1, 
Cell 3). There was a negative correlation between the two 
variables during lectures (r = −.426, p < .05), but not 
during videos (r = .23, p = .258). These exploratory 
analyses suggest that students who showed greater 
brain synchrony with their teacher during the lecture 
conditions also showed less of a relative reduction in 
their synchrony with the group for lectures compared 
with videos. 

We observed a similar interaction for the correlation 
between student–teacher closeness and student-to- 
teacher TI (r = .382, p < .05): Student–teacher closeness 
ratings only predicted student-to-teacher TI during lec- 
tures, not videos (student–teacher closeness: 3.94 ± 

0.26; Student-to-Teacher Closeness × Teaching Style: 
F(1, 39) = 3.98, p = .05; Figure 3C and D; Table 1, Cell 4). 
Interestingly, there was a significant correlation between 
student–teacher closeness and quiz scores (r = .352, p = 
.003; Figure 3E; Table 1, Cell 5). However, like student- 
to-group TI, student-to-teacher TI did not predict quiz 
scores for either condition (Student-to-Teacher TI × 
Quiz Scores: F(1, 35) = 0.05, p = .818; Figure 3F; Table 1, 
Cell 6). 

 
DISCUSSION 

In an effort to understand the neural basis of student– 
teacher interactions and explore the relationship be- 
tween brain-to-brain synchrony and classroom learning, 
we recorded simultaneous EEG from a group of high 
school students and their teacher during their normally 
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scheduled biology classes. EEG data were analyzed in 
conjunction with a set of behavioral measures, including 
quiz scores, self-reported engagement, and student– 
teacher closeness. 

We show that quiz scores were higher for videos than 
lectures, as was brain synchrony. However, although pri- 
or work has already demonstrated that brain-to-brain syn- 
chrony relates to successful communication (Dikker  et 
al., 2014; Stephens et al., 2010), memory formation 
(Hasson, Furman, Clark, Dudai, & Davachi, 2008), and 
information retention (Cohen & Parra, 2016), there was 
no relationship between student retention and brain-to- 
brain synchrony: Neither student-to-group synchrony nor 
student–teacher synchrony predicted quiz scores. It is 
worth emphasizing that we did see a similar overall 
pattern where quiz scores, student-to-group synchrony, 
student–teacher synchrony, and engagement were all 
higher for videos as compared with lectures, and we know 
from past research that social factors such as student– 
teacher closeness and student  engagement  are  related 
to student learning (Holper et al., 2013; Hughes et al., 
2012). 

There are multiple possible reasons as to why we failed 
to replicate previous findings between neural activity and 
students’ performance (Cohen & Parra, 2016). First, mea- 
suring neurophysiological activity in the real world comes 
with its own unique limitations, for example, the trade-off 
between preserving naturalistic exchanges to the greatest 
degree and minimizing artifacts in data. Classroom ex- 
changes are often dynamic and expressive, and although 
we instructed participants to minimize movement and 
speech during recording segments (recall that only the 
teacher spoke during lectures), a certain amount of natural 
gesturing was inherent to the design and environment 
compared with laboratory-based research. Second, and 
most important, prior laboratory-based research that has 
linked neural activity and learning used a larger sample 
of participants and longer quizzes (Cohen & Parra, 
2016). Here, we were constrained by class duration and 
class size. 

Furthermore, we estimated the overall relationship be- 
tween retention and synchrony during different teaching 
activities. This means the synchrony values included 
moments in which learned items were presented as well 
as moments with concepts that were later forgotten. This 
may have been too coarse as an approach for measuring 
students’ learning: Most past research has compared syn- 
chrony during the presentation of remembered versus for- 
gotten items (Battro et al., 2013; Holper et al., 2013). Thus, 
to accurately quantify the relationship between brain syn- 
chrony and learning, it might be necessary to reconstruct 
when the content featured on the quizzes was presented 
during class and relate student retention of that informa- 
tion to group synchrony during those specific “learning” 
moments (along the lines of, e.g., Kang & Wheatley, 
2017; Wagner, Kelley, Haxby, & Heatherton, 2016). 
Unfortunately, this information was unavailable in the 

current study as lectures were not scripted verbatim or 
videotaped, and the onset of the instructional videos was 
not synchronized with the EEG recordings. Finally, the 
EEG equipment we used is less precise than laboratory- 
grade EEG equipment used in classic experimentation, 
maybe resulting in failing to capture subtle effects. As 
technology advances in wireless EEG recording options 
(e.g., affordable headsets with more electrodes), isolat- 
ing neurophysiological activity in relation to specific 
stimuli events will be discernible and should be explored 
more fully in student-to-group and student-to-teacher 
interactions. 

Our second research goal concerned the relationship 
between student–teacher brain-to-brain synchrony, class- 
room learning, and student–teacher social closeness. We 
observed that student–teacher synchrony was predicted 
by teacher closeness during lectures, but not videos. 
One way to interpret this result is that the teacher is a 
greater “attractor” of synchrony during lectures than 
videos, independent of students’ preferences for videos 
over lectures. More simply put: The teacher is the “stim- 
ulus” during lectures, but not during videos. 

The finding that brain synchrony reflects student– 
teacher closeness relates to a growing body of literature 
about how social networks are represented in the brain 
(Curley & Ochsner, 2017; Parkinson, Kleinbaum, & 
Wheatley, 2017; Zerubavel, Bearman, Weber, & Ochsner, 
2015). It was recently demonstrated that similarity in 
fMRI responses to video stimuli across individuals varies 
with distance in a social network, with close friends exhi- 
biting the highest degree of neural similarity (Parkinson, 
Kleinbaum, & Wheatley, 2018). Another study found that 
information about social network position was spontane- 
ously activated when participants viewed familiar individ- 
uals (Parkinson et al., 2017). Similarly, in our study, 
student–teacher closeness was predicted by brain syn- 
chrony during lectures, when the students (presumably) 
were not actively thinking about their relationship with 
the teacher. 

The student–teacher results also support an indirect 
relationship between synchrony and performance. 
Although student–teacher synchrony did not directly relate 
to students’ quiz scores, student–teacher closeness did, sup- 
porting previous findings (Dikker et al., 2017; Watanabe, 
2013). Given the relationship between student–teacher 
closeness and quiz scores, future research may further 
elucidate whether students better retain information from 
lectures than videos over time, as prior research tested 
information retention after a period of 3 weeks from pre- 
sentation (Cohen & Parra, 2016). In addition, student-to- 
teacher synchrony, but not student-to-group synchrony, 
was predicted by students’ daily engagement ratings, sug- 
gesting that students’ relationship to their teacher, rather 
than to their peers, may be a stronger predictor of engage- 
ment. This also suggests a crucial link between attention, 
identifying the relevant stimulus features for interpreta- 
tion, and retention of information related to the target 
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stimuli—specifically, as attending to different features of 
stimuli can alter interpretation and is reflected in changes  
in neural activity (Cooper, Hasson, & Small, 2011). 

It is important to clarify that significant correlations in 
brain-to-brain synchrony research do not indicate that 
brains are “physically linked” (Babiloni & Astolfi, 2014). 
Rather, brain-to-brain synchrony is a neural marker, 
across all participants, that is a quantifiable reflection of 
underlying cognitive psychological processes. One pro- 
posal, with growing support (Dikker et al., 2017; Poulsen 
et al., 2017; Ki et al., 2016), is that brain-to-brain syn- 
chrony increases as shared or joint attention modulates 
entrainment by “tuning” neural oscillations to the tempo- 
ral structure of our surroundings. Temporally aligned en- 
trainment to the oscillatory features of external stimuli 
(e.g., teacher’s voice) is thought to support information 
extraction from the stimulus, such as in parsing continu- 
ous speech into syllables (Giraud & Poeppel, 2012) and 
attentional selection of relevant information (Lakatos, 
Karmos, Mehta, Ulbert, & Schroeder, 2008). Thus, 
stimulus-evoked responses drive the relationship be- 
tween similar brain activity in groups and naturalistic 
stimuli, and multiple perception-related processes, such 
as attentional engagement as well as structural features of 
the stimuli, modulate this relationship (Ki et al., 2016; 
Poulsen et al., 2017). 

It is widely shown that stimulus entrainment heavily 
depends on attention (Fiebelkorn, Saalmann, Kastner, 
2013; Zion Golumbic et al., 2013; Lakatos et al., 2008). 
For example, several recent studies demonstrated that,  
in the “cocktail party effect,” when confronted with two 
speakers and paying attention only to one of them, oscil- 
lations in high-order auditory areas track only the 
attended speaker’s voice (Zion Golumbic et al., 2013; 
Mesgarani & Chang, 2012). In social interactions, joint at- 
tention and mutual gaze drive the defining characteristics 
of the exchange: initiator and responder roles, shared 
intention and motivation, and the interactive context 
(Koike et al., 2016). Stimulus properties (e.g., teaching 
style or richness of the audiovisual environment; Hasson 
et al., 2004), individual differences (e.g., focus, engage- 
ment, personality traits; Nummenmaa et al., 2012), and 
social dynamics (e.g., social closeness and social inter- 
action; Koike et al., 2016) each mediate attention and 
brain-to-brain synchrony. 

In our analyses of student-to-group and student-to- 
teacher synchrony, we begin to see how neural syn- 
chrony reflects the complex interaction between attention 
and social dynamics. During the lectures, student–teacher 
closeness varied with student–teacher synchrony. Still, 
videos overall generated stronger student–teacher syn- 
chrony than lectures overall. This may be due to low-level 
differences between the two types of stimuli (e.g., stron- 
ger audiovisual cues in the videos), in line with prior find- 
ings suggesting that correlated neurophysiological activity 
is partially driven by low-level visual features (Poulsen 
et al., 2017). Together, these findings are readily explained 

within a stimulus entrainment account: When the teacher 
is the stimulus, student–teacher synchrony increases as a 

function of increased attention-modulated stimulus 
entrainment (indirectly measured via student–teacher 

closeness in our study). Independently, videos are a stron- 
ger “entrainer stimulus” than lectures because of their rich 
(and spatially constrained) audiovisual content, resulting 

in an increase of brain-to-brain synchrony (Ki et al., 
2016). As discussed, a classroom has complex sensory fea- 
tures and dynamics, such as educational videos, group pro- 
jects and discussion, and interactions with the teacher. This 
increases variability of how students may receive and retain 
information. Although the student–teacher relationship 

mimics more classically explored leader–follower dynamics 
(Jiang et al., 2015), little research has directly investigated 
the specific nuanced features of this complex social ex- 
change to provide insight into the neural underpinnings 
of attentional engagement in the real world (Ki et al., 2016). 

The interaction between students and their teacher is 
implicit and explicit, is social, flows bidirectionally and 
continually, and is influenced by behavioral contagion as 
individuals automatically imitate each other ( Watanabe, 
2013)—all with the added component of performance- 
based evaluations and assessments. In this study, we rep- 
licated previous findings (Dikker et al., 2017) showing 
that students reported higher daily engagement for video 

lessons compared with lectures and built upon these 
findings by showing that students also performed better 
in quizzes measuring content retention in the lesson type 
they preferred (i.e., videos). In summary, in addition to 

the nature of the stimulus (here, lectures vs. videos), 
social dynamics, specifically student–teacher social close- 
ness, appear to drive brain-to-brain synchrony. Our find- 
ings on brain-to-brain synchrony in a group setting marry 
two lines of prior research, namely, studies investigating 

neural entrainment to  engaging  stimuli (e.g., Poulsen 
et al., 2017) and studies linking social connectedness to 
brain responses (Parkinson et al., 2017, 2018). 

Further investigating these complex dynamics as they 
occur naturally—such as those between students, peers, 
and their teacher in relation to class content—can reveal 
more about the nuanced interplay of the various factors 
that affect learning in the real world. 
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